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1. Introduction and summary. This paper continues a study, initiated

in [1], of the stochastic independence of V = X - Y and the mean of

order y,

(1/y) log [(e7X + e7X)/ 2 ] for y4 0 and 7 + ;

(X + Y)/2 for 0o(i) M -
Y max (X,Y) for 7 + c

min (X,Y) for 7 c -

for independent X and Y.

The case y - 0 is solved by the well known result, if, for

independent X and Y, the variables X + Y and X - Y are independent,

then both X and Y have normal distributions with a common variance.

The first proof of this result may be found in Kac [5]. (Although the

statement of this result there is much weaker, Kac's proof applies

exactly to the statement above.)

A corresponding result for the gamma distribution, proved in

restricted form by Hogg [4], and proved without restrictions by Lukacs

[6], is as follows: if Z1 and Z2 are independent positive random

variables ror which Z1 + Z2 and Z]/ZI are independent, then both Z

and Z2 have gamma distributions with a common scale parameter. This
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result may be used to complete the study of the independence of M17

and V for independent X and Y when y is finite and non-zero, by

letting Z1 = exp(7X) and Z2 = exp(yY). It is clear, then, from the

result of Hogg and Lukacs that both exp(7X) and exp(yY) must have

gamma distributions with a common scale parameter. The resulting

distributions of X and Y have been studied in [1).

Therefore, of this study, there remain yet to be completely

solved only the cases y - + c and 7 a - w. These two cases are

essentially the same since if M+0 and V are independent, then so are

min(-X,-Y) and V. Thus, the negatives of the distributions for which

M and V are independent will yield independent M-, and V. We

consider only the case 7 m - w. This problem is considered in a

previous paper, [2], in which the distributions were restricted to be

discrete. The main result of that paper is as follows: if X and Y

are independent, non-degenerate, discrete random variables, and if

U = min(X,Y) and V = X - Y are independent, then X and Y both have

geometric distributions with common location and scale parameters,

but possibly different geometric parameters. If the probability mass

function of the geometric distribution is written as

(2) p(x) - (1 - p) p(X -9)/c for x -, + , + 2c, ---

then, the parameter 0 is a location parameter, c is a scale parameter,

and p is called the geometric parameter, c > 0, 0 < p < 1.

In this paper, the distributions of X and Y are restricted to

be absolutely continuous. This will result in a characterization of

the so-called exponential distribution whose density is
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(3) f(x) - (1/o) exp(-(x - 9)/o) if x > G

and zero otherwise. The parameter @ is a location parameter, and the

parameter a > 0 is a scale parameter, which is also the standard

deviation of the distribution. In these terms the main result of this

paper may be stated as follows: if X and Y are independent random

variables with absolutely continuous distributions, and if U - min(X,Y)

and V - X - Y are independent, then both X and Y have exponential

distributions with a common location parameter but with possibly

different scale parameters. This result then gives a characterization

of the exponential distribution, since it is easy to show the converse,

that if X and Y are independent and if each has an exponential

distribution with a common location parameter but with possibly

different scale parameters, then U and V are independent.

2. A characterization of the exponential distribution. The following

three hypotheses are referred to frequently in this section.

H1 : The random variables X and Y are independent.

H2 : The random variables U = min(X,Y) and V - X - Y are

independent.

H 3: The distributions of X and Y are absolutely continuous

(with respect to Lebesgue measure).

Hypothesis H3 merely states that the probability densities (with

respect to Lebesgue measure), fx(x) and fy(y), of the variables X and

Y exist. It is immediate from these hypotheses that the distributions

of U and V are absolutely continuous also. Furthermore, the joint

distribution of U and V has a density which factors from hypothesis H ,



(4) f,v(U,V) - f1 (u) fv(v)

and, using hypothesis H1 also, is easily found to be

(5) fu(u) fv(v) - fx(U + v) fz(u) for v > 0

and

(6) fu(u) rv(v) - fx(u) fY(u - v) for v < 0

except perhaps for (uv) in some null set, N, in the plane. In the

following, Lebesgue measure on the real line will be denoted by 2,

and Lebesgue measure on the plane will be denoted by X2. Thus, equations

(5) and (6) are valid unless (u,v) e N, where £2 (N) ' 0.

It is our desire to show that, under hypotheses H1 H2 and H3,

both X and Y have exponential distributions with a common location

parameter, but with possibly different scale parameters. In the

demonstration of this fact, we shall work with equations (5) and (6),

and as a consequence we shall have to pay a great deal of attention to

null sets, thus obscuring the proof. However, a general outline of

the probf may be found in the statements of the several lemmas which

preceed the main theorem.

Lemma 1. If, for independent non-degenerate X and Y, U and V are

independent, then P(V > 0) > 0 and P(V < 0) > 0.

Proof. Suppose P(V > 0) = 0; then,

(7) P(X - U) - P(X ;5 Y) - P(V g O) - 1.
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Thus, the statement that U and V are independent is the sarae as the

statement that X and X - Y are independent. But Crom lemma 1 o ,'

[2], X cannot be independent oC X - Y for independent X and Y unless

X is degenerate. This contradiction proves P(V > O) > O.

Consideration of -V in place of V proves P(V < 0) > 0 by symmetry.

Lemma 2. It', for independeit non-degencrate X and Y, U and V are

independent, then the distributions of U, X, and Y are not bounded

above.

Proof. We shall prove the lemma for the distribution oa U, since the

result for the distributions of X and Y obviously follow from this.

Suppose the distribution of U is bounded above, and let b be the least

upper bound for the distribution of U. Thus

(8) P(U > b) 0

and, for every number e > 0,

(9) P(U > b > 0

Dow, find an E > 0 such that P(V > e) > 0. That such an e exists

follows C'rom lenma 1. Then,

0 < P(V > e) P(b - < U - b)

= P(V > e, b - E <U - b)
(10)

= P(X > Y + E, b - Y <Y ; b)

- P(X > b) P(b - E < Y 9 b) .
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Hence, P(X > b) > 0. But by symmetry, P(Y > b) > 0, which implies,

by the definition of U, that P(U > b) > 0, contrdicting (8) and

proving the lemma.

Let AU represent the null set of the density of U; i.e.

AU - (u: fu(u) = 0). Similarly, let AX = (u: fx(u) = 0) and

Ay = (u: fy(u) = 0). The following lemma shows that these three sets

are essentially identical. The notation E1 A E2 represnets the

symmetric difference of the sets E and E2 ; i.e. E A = E2 - 0 E2E(

We note that H3 implies that both X and Y are non-degenerate, so that

lemmas 1 and 2 are valid under hypotheses H1 H12 and H13.

Lemma 3. Under hypotheses H1 H2 and H3, I(AX A Ay) -I(A x A AU)

= Z(AxAAU)= 0.

Proof. Let u0 e Ay; then, for each v > 0, equation (5) implies that

fu(uo) fv(v) - 0 unless (uo,v) e N. But lemma 1 implies that fv(v) > 0

on a set, call it B, of positive Lebesgue measure in the interval

(0, -). Thus, if fu(uo) 4 0, then (uo,v) e N for all v e B. This

implies that if u0 E Ay, then u0 e AU unless u0 E N* - (u: (u,v) F N

for all v e B); or, more simply,

(11) Ay Au UN*

Furthermore, i(N*) - 0, since

(12) I(N*) I(B) = £2 (N* X B) ; 12 (N) = 0
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Now suppose that u0 e AU; then, for each v > 0, equations (5)

implies that fx(uO + v) fy(u0 ) - 0, unless (uo,v) e N. But lemma 2

implies that fx(u) > 0 on a set B of positive measure in the interval

(uo,w). Thus, if fy(uo) 4 0, then (uov) e N for all v e Bu - u.

Hence,

(13) AU C AYU N,

where N = [u: (u,v) e N for all v e Bu - u). If we let

E - ((u,v): u e N and v + u e Bu), so that E C N and A2 (E) ' 0, then,

by Fubini's theorem, of more directly by theorem A page 147 of Halmos
-S

[3], almost every section E has measure zero. But for u e N, E has

positive measure, implying that 1(0) - 0.

Together, equations (11) and (13) imply
(14) I(A. A AU) - A(N*) + A(N) - 0.

By symmetry, I(AX A AU) - 0, and as a consequence, I(Ax a Ay) - 0,

completing the proof.

Lemma 3 implies that the sets on which fxofy, and f vanish

may be taken to coincide by increasing if necessary, the null set N

outside of which equations (5) and (6) hold. This we shall assume

done, and we shall denote the set on which fx (or fy or fu) vanishes

by A, and we shall assume that fx (and f and fu) is positive on Ac.

We may choose any representations of the densities we like

for these formulas; all such representations differ only on null sets.

However, it will be convenient in what follows to choose as the

particular representative of the density of V
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(15) fV)= / vx(X) fy(x - v) dx

for all v, for any choice of the densities of X and Y. It will

turn out that this function is already a continuous function oi' v

over the whole real line.

Lemma 4. Under hypotheses H H2 and H3 there exist an e > 0 and an

S> 0 such that fv(v) k y for all v such that -E 5 v 9 e.

Proof. Let D- (u: fx(u) > l/n) andE = (u: fy(u) > 1/n). Then

both D n"Ac and E n"Ac. Furthermore, D. n EnPAC, and using (15)

(16) fv(v) D(E v) f(x) f(x - v) dx

A (1/n 2 ) I(Dn f')(E - v))

First we find an n such that

(17) I(Dn E0%) > min(l,1(Ae)/2)

(Vote that A(Ac) may be infinite.) Then, since (exercise (1) page 268

of Halmos [4])

(18) '(D)n ,(En - v)) -.+ (DnEn) , as v -. 0,

there exists an e > 0 such that for -c _ v 9 E,

(19) '(Dn f)(En - v)) ?- min(l,i(D1 1 E)/2)

This implies that for -e -S v 5 E,
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(20) fv(v) a (1/n2) niln(/2,S(AC)/2) - , > 0,

proving the lemma.

The following lenma shows that the null set, A, of the

distribution of X, is essentially the interval (-wQ), where 0

is some number (Q - -= being a possibility).

Lemma 5. Under hypotheses H 1 H2 and H3Y either (i) I(A) - 0 or

(ii) there exists a finite number Q such that L(A A(-0,.)) - 0.

Proof. We first show that for almost all u e AC, W((A- u) 1 (O,0)) 0 0,

where t is any positive number such that fv(v).> 0.for 0 < v. < e. Such

an a exists from lemma 4. since 2((A-- u) •. (0,e)). is a continuous

function of u, (again Halmos [3] page 268), the set C1 - (u: e((A -. u)

C (Oa)) > 0) is open.. Thus the. set C2 - Ac I) C1 is measurable, and

we are to show I(C 2 ) -0. If u E C2 , then (u,v) a N for every v for

which 0 < v < a and u + v e A, since for such a v equation (5) is not

valid. Now let D - ((u,v): u a C2 , (uv) a N) so that D C N. Then every

section of D, Du (v: .(u,v) e D), for which u a C2 , has positive Lebesgue

measure. Then, again by Halmos [3] theorem A page 147, '(C 2 ) - 0 since

1 2 (D) -'.o

Thus for almost all u a A., 1((A u) (,e')) -0. By

induction, !((A - u) (O,0( 3 / 2 ) nej) - 0 for all n and for almost

all u e Ac. Since true for all n, we have

(21) A(A tl(u,w)) 0 0 for almost all u F Ac

Either (i) A(A) - 0 or (ii) 9 * glb(u: Z(A ,.(u,.)) - 0) exists. Iii the

second case, it is easy to see i'rom (21) that I(A&(-.o,Q)) - 0 as was to

be proved.
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According to this lemma, we may take the set A to be the set

(-",Q) (if A is a null set, 9 = -co) by enlarging, if necessary, the

set N. We assume that this has been done. Thus each of the functions

f Xfy, and fz are zero of the set (-w,G) and positive of the set (0,.).

Lemma 6. Under hypotheses H, H 2 and H3, iv(v) is equal almost everywhere

to a continuous, infinitely differentiable and positive function of v on

the intervals (-m,0) and (0,-).

Proof. For u > 9, equation (5) asserts that

(22) fx(U + v) - fv(v) [fu(u)/fy(u)]

for v > 0 and fcr (u,v) 4 N. Let g(u) be any function of u for which

a) g(u) - 0 outside (bl,b2 ) where 9 < b1 < b2 ,

b) g(u) > 0 inside (bl,b2 ), and

c) g(u) is continuous and has n continuous derivatives on the

real line, where n is an arbitrary positive integer. Then

(23) f (u + v) g(u) du . fv(v) VA f f (u)Ify(u)] g(u) du

for almost all v > 0. Since the left side is finite and positive for

all v >-0, the integral on the right side must be finite and positive

also. But the left side is equal to

(24) f (w) g(w - v) dw

which is a continuous function of v with n continuous derivatives. Since

LV(v) is equal for almost all v > 0 to (24) divided by the integ2.aL on

the right side of (23), and since n is arbitrary, the lema is proved foxr

the interval (O,m). By symmetry, the lemma must also be true for the

interval (-0,0).
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Lemma 7. Under hypotheses Hl "2 !Ed y each of the functions fx(x),

fy(y), and fu(u), is equal almost everywhere in the interval (0,.) to

a continuous, infinitely differentiable function.

Proof. From (22), it is immediate that fx(u) is equal for almost all

u > 0 to a continuous, infinitely differentiable function. That fy(u)

is also equal almost everywhere on the interval (0,a) to such a function

follows from symmetry. Then, dividing equation (5) by fv(v) (we may

assume it is positive for v > 0 by enlarging N if necessary) will

immediately give the same result for fu(u), completing the proof.

By enlarging the set N again if necessary, we shall choose

fX(x), fy(y), and fu(U) to be continuous and infinitely differentiable

on the interval (o,w) and to vanish on the interval (-',Q). The fact

that the four functions, f' fY f and f are continuous except

possibly at one point, implies that equation (5) must be valid for all

u 4 0 and for all v > 0. Similarly, equation (6) must be valid for all

u 4 0 and for all v < 0.

Theorem. Suppose that the random variables X and Y are independent and

have absolutely continuous distributions. Then, in order that

U a min(X,Y) and V - X - Y be independent, it is necessary and sufficient

A that both X and Y have exponential distributions with the same value of

the location parameter.

Proof. Necessity: Since equation (5) is now valid and positive for all

u > 0 and for all v > 0, we may take logarithms of both sides, and

differentiate both sides first with respect to v > 0 and then with respect

to u > 0. Denoting the logarithm of fx by hx, we have
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(25) hi,(u) a 0

for all u > 0. The solution of this differential equation gives

for u > 0

(26) log fx(U) - U +i

where 0 and 1 are constants of integration. Since tx(u) vanishes for

u < 0, and since the area under the curve fx(u) must be finite, it is

clear that 9 is negative and 0 is finite. Let a ,, . Then, since

the area under the curve fx(u) must be equal to one, it follows that

" - a0/01 +log a V Hence,

(27) fX(x) - (1/il) exp(-(x - 0)/al) if x > 0

and zero otherwise. By synmetry.

(28) fY(y) . (l/02) exp(-(y - 0)/02) if y > 0

and zero otherwise (that the same value of 0 must be used follows from

lama 3).

Sufficiency. Now suppose that the distributions of X and Y are given

by (27) and (28). Then the Joint density of U and V may be written

fx(u + v) fy(u) for v > 0

f•,u u,V)u

Lfx(u). ry(u - v) for v < 0
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0 for u <0

(29) .(1/0lo2) a ex +-(. +o )(u -) - v ] fo u > 9, v > 0
1 2 1

exp(-+Y +f)(uo-)+ o u > , v < 0
1 2 2

- fu(u) fv(V),

where

0 (1 1for u <0
(30) fU(u)- +-I )1e•{. 1 1 foru>

1 02 (.40-(1 + j2)(u 0))

and

F exp(-v/ol) for v > 0

(31) fr(v) - 1+2 1-

lexpC+V/o2} 
:for v < 0

proving the independence of U and V.

We note from equations (30) and (31) that U has an exponential

distributtion while V has a double exponential distribution with

different scale parameters for the two sides and with the weights

chosen so that the density is continuous at the origin.

3. Concluding remarks. Here it will bepointedout what remains to be

solved of the problem, mentioned in the introduction, of finding

distributions for independent random variables, X and Y, which make
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U - min(X,Y) and V - X - Y independent. This paper solves the

problem when both X and Y have absolutely continuous distributions.

A preceeding paper, (2], solves the problem wh6n both X and Y

are discrete, or when one of X or Y is degenerate. Still unsettled

are the cases in which at least one of the distributions is

continuous singular, or a non-trivial mixture of an absolutely

continuous, discrete, and continuous singular distribution. In the

following paragraph, an argument will be given which will dispose of

the case in which at least one of the distributions has a positive

probability mass at some point. What remains, therefore, is the

problem of finding whether or not there are continubus distributions

for independent X and Y, at least one of these distributions not

absolutely continuous, for which U and V are independent.

Now suppose that X and Y are independent, non-degenerate random

variables such that U w min(X,Y) and V = X - Y are independent. We

suppose further that either the distribution of X or the distribution

of Y has at least one point mass. We will show that the distributions

of both X and Y must be discrete, so that from the main theorem of

[2], botb X and Y must have geometric distributions with common location

and scale parameters. Suppose there exists a number, X0 , such that

P(X- xO) >0. Then from lemma 2 of this paper, P(Y >xO) > 0, so that

from lemma 2 of [2], P(Y . xo) 0 0. Hence, P(V- 0) >0. But since

U and V are independent,
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P(X - Y S u) - P(u S u, V - 0)

(32) M P(U Au) P(V- o)

. (l - P(x > u) P(Y > u)) P(v - 0).

Hence, any time there in an increase on the right side as u increases,

there is a corresponding increase on the left. That is to say, any

interval containing some mass of the distribution of either X or Y

contains a common point mass of each. Non-degeneracy implies there

must be at least two of these, and the proof of theorem 1, (2), implies

that all such mass points must lie on a fixed lattice. Together, these

facts imply that the distributions of both X and Y must be discrete.
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